节省时间成本,让工作学习变得更高效!www.ddwenku.com 多多文库

多多文库 > 范文 > 资料内容页
    名师点睛:怎样应用旋转解题_考前复习.doc
    2024-02-20 点击次数: 上传者:叶子 下载全文
    资料图1 资料图2 资料图3 资料图4 天津四中 马艳芳 精讲精练 随着新课程标准的实施,其基本理念对近几年中考数学命题的改革产生了重大影响。新课程标准下的初中数学教材,增添了图形变化的问题,使数学更贴近生活,几何变换这一重要的数学思想,在近几年的中

    资料图1

    资料图2

    资料图3

    资料图4

    天津四中 马艳芳

    精讲精练

    随着新课程标准的实施,其基本理念对近几年中考数学命题的改革产生了重大影响。新课程标准下的初中数学教材,增添了图形变化的问题,使数学更贴近生活,几何变换这一重要的数学思想,在近几年的中考、竞赛试题中经常出现,这使得数学试题的解题方法和技巧更加灵活多变。只改变图形的位置,而不改变其形状大小,使几何图形重新组合,产生新的图形关系,从而找到解决问题的途径,这是进行几何变换的目的,其中旋转变换是最常见的手段之一。

    旋转是几何变换中的基本变换,它一般先对给定的图形(或其中一部分图形),通过旋转,改变位置后重新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。

    旋转变换是一种重要的几何变换,进行几何变换的目的有两个:

    ①揭示几何图形的性质或几何量之间的内在联系;

    ②使分散的元素集中,从而使表面互不相干的条件变得密切相关。

    什么时候考虑用旋转变换?怎样运用旋转变换呢?下面结合例题谈谈旋转变换在平面几何解题中的应用:

    例1.如图,正方形ABCD的边长为a,将正方形OMNP的一顶点O放在正方形ABCD的对角线AC、BD的交点处,你能求出两正方形重叠部分的面积吗?

    这道题是初二课本上的一道课后练习题,当时我们解这道题时是从全等的角度来考虑的。现在我们可以尝试着用新方法旋转来解这道题。

    分析:重叠部分被分为两部分△OCF和△OCE,而△OCF ≌△OBE,△OCE≌△ODF,我们可以将△OCF绕点O顺时针旋转90与原有的△OBE重合,或将△OCE绕点O逆时针旋转90与原有的△ODF重合。这样,通过旋转我们能轻而易举地知道重叠部分面积为正方形ABCD面积的■,所以重叠部分面积为■a2。

    解:∵OB=OC

    将△OCF绕点O顺时针旋转90

    △OCF≌△OBE

    S阴影=S△OBC

    S阴影=■a2

    这道题也可将△OEC绕点O逆时针旋转90,进行解答。

    这道题是通过旋转使图形与原有图形重合,从而使重叠部分面积得到重新组合,使问题得到解决。这个以前做过的题目,我们换一个角度再看这道题目,又别有一番风景。在感观上认识旋转,了解旋转解题的简便之处。从中总结出用旋转解题的前提条件相交等线段,从感性认识上升到理性认识。

    练习1.如右图所示,分别以正方形ABCD的边AB、AD为直径画半圆,若正方形的边长为a,求阴影部分的面积。

    例2.如图所示,设P为等边△ABC内的一点,APB=113,APC=123

    问:(1)PA、PB、PC能否构成三角形?

    (2)如果能构成三角形,请找出构成的三角形各内角的度数。

    分析:已知三条线段看它能否构成三角形,方法大概有两种。从计算的角度求三边长度,比较三边大小,利用三角形三边关系,判断能否构成三角形。或从图形的角度,看能否将其放入一个三角形中。根据本题的实际情况求三边长度不是很现实,所以问题的解决就是看能否把三条线段放入一个三角形中。如何将三条线段放入同一个三角形中?考虑到AB、BC为两条相交等线段利用旋转,很好地解决了这一问题。

    ......试读结束,免费注册后可下载完整电子版(名师点睛:怎样应用旋转解题_考前复习.doc)

猜你还喜欢